Decellularized and Engineered Tendons as Biological Substitutes: A Critical Review

نویسندگان

  • Arianna B. Lovati
  • Marta Bottagisio
  • Matteo Moretti
چکیده

Tendon ruptures are a great burden in clinics. Finding a proper graft material as a substitute for tendon repair is one of the main challenges in orthopaedics, for which the requirement of a biological scaffold would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon-derived matrix increasingly represents an interesting approach to treat tendon ruptures. We analyzed in vitro and in vivo studies focused on the development of efficient protocols for the decellularization and for the cell reseeding of the tendon matrix to obtain medical devices for tendon substitution. Our review considered also the proper tendon source and preclinical animal models with the aim of entering into clinical trials. The results highlight a wide panorama in terms of allogenic or xenogeneic tendon sources, specimen dimensions, physical or chemical decellularization techniques, and the cell type variety for reseeding from terminally differentiated to undifferentiated mesenchymal stem cells and their static or dynamic culture employed to generate implantable constructs tested in different animal models. We try to identify the most efficient approach to achieve an optimal biological scaffold for biomechanics and intrinsic properties, resembling the native tendon and being applicable in clinics in the near future, with particular attention to the Achilles tendon substitution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emer...

متن کامل

Review on Brain Decellularization Methods and their Applications for Tissue Engineering

Introduction: Tissue engineering by using decellularized tissues has been attracted attention of researchers in the regenerative medicine. Extra cellular matrix (ECM) is a secretory product of cells inside the tissues with supportive and regulatory function for homing cells. ECM contains glycosaminoglycans (GAGs) and fibrous proteins. Each particular tissue has its unique ECM, especially brain,...

متن کامل

Biomechanical properties of decellularized porcine pulmonary valve conduits.

Tissue-engineered heart valves constructed from a xenogeneic or allogeneic decellularized matrix might overcome the disadvantages of current heart valve substitutes. One major necessity besides effective decellularization is to preserve the biomechanical properties of the valve. Native and decellularized porcine pulmonary heart valve conduits (PPVCs) (with [n = 10] or without [n = 10] cryoprese...

متن کامل

Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve

The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered h...

متن کامل

Repopulation of intrasynovial flexor tendon allograft with bone marrow stromal cells: an ex vivo model.

PURPOSE Delayed healing is a common problem whenever tendon allografts are used for tendon or ligament reconstruction. Repopulating the allograft with host cells may accelerate tendon regeneration, but cell penetration into the allograft tendon is limited. Processing the tendon surface with slits that guide cells into the allograft substrate may improve healing. The purpose of this study was to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016